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Abstract: The high-precision and high-continuity time-frequency system is the core of navigation
satellites. Considering the need to build next-generation resilient time reference and the challenge of

maintaining continuous functionality and non-degraded performance of the time-frequency system under
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fault conditions, a spaceborne time-frequency generation method based on two-level steering and model
refinement is proposed. This approach optimizes the design of a two-level steering scheme for a single
satellite” s time-frequency system and introduces techniques for refining, rapidly evaluating, and
compensating the spaceborne hot-standby clock model in fault modes.Simulation experiments using a new-
generation integral sphere cold atom clock,active hydrogen maser,and rubidium clock as spaceborne clocks
show that in normal operation mode with two high-performance spaceborne clocks,the two-level steering
method can achieve both the long-term stability performance of the integral sphere cold atom clock and the
short-term stability performance of the active hydrogen maser. The spaceborne time-frequency stability can
reach 1.9 X 107" at second intervals and 1.4 X 10~ " per day, fully leveraging the advantages of the new-
generation spaceborne clocks.In fault mode,one of the high-performance timekeeping frequency standards
continuously evaluates and steers the hot-standby rubidium clock, while simultaneously using the steered
active hydrogen maser to refine, evaluate, and compensate the clock model of the hot-standby rubidium
clock. The compensated rubidium clock signal can achieve a stability of 2.4 X 107" per day, effectively
reducing the impact of the rubidium clock’s inherent frequency drift, thereby enhancing the resilience of
the spaceborne time-frequency system.The proposed two-level steering time-frequency generation scheme,
along with the model refinement, evaluation, and compensation techniques, can provide a reference for
building the next-generation spaceborne time reference, fully leveraging the advantages of high-
performance clocks on a single satellite,and significantly improving the accuracy,continuity,and reliability
of spaceborne time-frequency in fault scenarios.
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